
Vol. 13, No. 2: 21–37

Simple Empty-Space Removal
for Interactive Volume Rendering

Vincent Vidal
INRIA-Evasion

Xing Mei
CASIA-NLPR/LIAMA

Philippe Decaudin
INRIA-Evasion

Abstract. Interactive volume rendering methods such as texture-based slicing

techniques and ray-casting have been well developed in recent years. The rendering

performance is generally restricted by the volume size, the fill-rate and the tex-

ture fetch speed of the graphics hardware. For most 3D data sets, a fraction of

the volume is empty, which will reduce the rendering performance without specific

optimization. In this paper, we present a simple kd-tree based space partitioning

scheme to efficiently remove the empty spaces from the volume data sets at the pre-

processing stage. The splitting rule of the scheme is based on a simple yet effective

cost function evaluated through a fast approximation of the bounding volume of the

non-empty regions. The scheme culls a large number of empty voxels and encloses

the remaining data with a small number of axis-aligned bounding boxes, which are

then used for interactive rendering. The number of the boxes is controlled by halting

criteria. In addition to its simplicity, our scheme requires little preprocessing time

and improves the rendering performance significantly.

1. Introduction

Interactive volume rendering methods play an important role in scientific vi-
sualization and computer graphics [Hadwiger et al. 06]. Due to the rapid

© A K Peters, Ltd.

21 1086-7651/06 $0.50 per page

22 journal of graphics tools

Figure 1. An illustration of our empty-space removing method. Empty voxels
are progressively removed from the original volume with a kd-tree based spatial
partitioning scheme.

improvement of graphics hardware, several efficient algorithms have been pro-
posed in the last few years, such as slice-based methods with 2D textures or
3D textures [Cabral et al. 94, Engel and Ertl 02] and GPU-accelerated ray
casting [Kruger and Westermann 03, Stegmaier et al. 05]. They produce good
visualization results at interactive framerates. For slice based methods, a
stack of planes are generated to resample the volume data by texture map-
ping, while for ray casting methods, some fragment operations such as texture
fetches and arithmetic calculations are performed on each pixel of the raster-
ized bounding box of the volume. If a large fraction of the volume contains
no information of interest, these methods will generate lots of fragments that
do not contribute to the final image. Unnecessary operations on these void
fragments will bring down the rendering performance significantly. Several
techniques have been proposed to solve this issue. For static volumes (with
no time-varying data or dynamic transfer functions), one possible way to im-
prove the performance is to remove most of the empty space in the volume at
the preprocessing stage before sending it to the rendering pipeline.

This idea was first described by [Levoy 90] for ray casting methods. Spa-
tially coherent information was encoded into an octree structure and was used
to skip empty space along the marching ray. An efficient GPU implementa-
tion of the aforementioned technique was presented in [Kruger and Wester-
mann 03]. This approach requires a multi-pass rendering process and can not
be easily integrated with the slice-based methods. The octree structure has
also been widely used in 3D texture based rendering as a multi-resolution rep-
resentation [LaMar et al. 99]. However, since the splitting rule for the octree
can not be adjusted flexibly with the volume content, many boxes are needed

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 23

for removing a significant amount of empty space. [Kähler et al. 03] proposed
another hierarchical data structure known as an AMR (Adaptive Mesh Re-
finement) tree. The process of building an AMR tree is based on a complex
clustering algorithm which also leads to large number of boxes. [Tong et al. 99]
proposed an alternative approach to split the volume into equal-sized blocks
along one selected axis and trim each block to a smaller size with the bound-
ing volume. The uniform space partition along one axis made the approach
inefficient for unevenly distributed volume data. [Li and Kaufman 03] pre-
sented another volume partitioning method called ”Box Growing”. Starting
from seed texels, a set of boxes grow to find the connected regions with similar
properties. The resulting box distribution is closely related to a non-trivial
selection of the seed texels and the method might produce a large number of
boxes.

In this paper, we present a simple empty space removing method for inter-
active rendering of static volumes. Our first concern is to cull a large number
of empty voxels from the volume with a small number of boxes. The render-
ing efficiency not only depends on the number of empty voxels filtered out,
but also on the granularity of the partitioning. Too many boxes will increase
the burden of the rendering algorithm. For slicing-based rendering, this will
lead to expensive back-to-front box sorting and context switching. And for
raycasting, the box traversal cost (boxes/ray intersections) will become non-
negligible. Our second concern is to keep the preprocessing time low so that
(re)processing the data will not be prohibitive. We choose the flexible kd-tree
structure as our hierarchical representation for the volume data. Starting with
one bounding box that encloses the volume, the method recursively splits the
volume and builds up the kd-tree. The splitting plane for each node of the
tree is chosen with a cost function, which estimates how many empty voxels
can be removed from the node by the splitting. The cost function relies on the
computation of the bounding volume for any given axis-aligned region, which
can be accelerated with a 3D-summed-volume table. We then traverse the
kd-tree to get a set of axis-aligned bounding boxes (AABBs) enclosing the re-
gions of interest and render them. Due to the efficient space removing scheme,
our preprocessing method is fast and the rendering performance is improved
significantly. We obtain a hierarchical structure which progressively fits the
non-empty voxels according to a specified traversal depth. This depth can be
deduced from some intuitive user defined parameters (maximum number of
boxes, percentage of empty space to remove...) or even selected interactively.

The kd-tree structure is not new for volume rendering. [Subramanian and
Fussell 90] proposed to accelerate volume ray tracing with a kd-tree structure.
The main difference between their method and our method is the partitioning
rules: they employ the median-cut method to generate a well balanced tree
with a small depth limit, which brings benefits for fast tree traversal and
ray tracing, while we focus on removing the empty space, which is more

24 journal of graphics tools

important for interactive rendering methods. In parallel with the Box Growing
scheme [Li and Kaufman 03] for volume subdivision, [Li et al. 03] suggested
converting all the grown boxes into a kd-tree for quick visibility sorting. The
kd-tree structure was not used for the generation of the sub-volumes.

2. Empty Space Removing Preprocess

Our preprocessing method is divided into two phases: the kd-tree generation
phase and the subvolume list generation phase. In the first phase, we build
the kd-tree hierarchical structure from the volume data set with a recursive
top-down algorithm. In the second phase, we traverse the tree to get a list of
all the non-empty subvolumes. The subvolume list is represented as a set of
AABBs, which can be easily rendered with slice-based methods or ray casting
methods. In this section, we describe the two phases in detail.

2.1. Kd-Tree Generation

We assume that the original volume data V is stored in a lx× ly× lz 3D array
where lx, ly, lz is the volume resolution in the X, Y, Z direction respectively.
The value of voxel (i, j, k) in volume V is denoted as V (i, j, k). In a preparation
step, the voxels in V are classified into ”empty” and ”non-empty” ones with
a classification threshold specified by the user. We generate a copy of the
volume V , denoted as V1, and store the classification results in it:
If voxel (i, j, k) is empty V1(i, j, k) = 0, otherwise V1(i, j, k) = 1.
Since V1 provides enough information on the spatial distribution of the data
in V , we work on V1 to remove the empty voxels.

Our kd-tree building process starts with an axis-aligned region that encloses
the entire volume V1. We first check if the region is divisible or not according
to some specified criteria. If it is divisible, the region is divided into two
subregions and labeled as an interior node. The two subregions are inserted
into the tree as the child nodes, and their bounding boxes are adjusted to a
smaller size to discard the empty voxels in the parent node. The subdivision
procedure is then repeated recursively on the two child nodes. If the current
region is not divisible (ie., one of the halting criteria is satisfied), then the
region is labeled as a leaf node, and the recursion is terminated.

The pseudocode for the tree building process is presented in Algorithm 1:
In the TreeBuilding function block, we initialize the root node with the
entire volume V1 and build the kd-tree hierarchical structure by calling the
NodeSplitting function, which splits each interior node of the tree in a
recursive way.

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 25

Algorithm 1. (Pseudocode for the kd-tree building process)

struct TreeNode {
bb �Axis-aligned Bounding Box of the node
left ptr �pointer to the left child
right ptr �pointer to the right child
depth �current node depth in the tree

}

function NodeSplitting(TreeNode∗ node)
if node is divisible then

plane ← SplittingPlaneSelection(node)
SubRegionGeneration(node, plane)
NodeSplitting(node→left ptr)
NodeSplitting(node→right ptr)

end
end function

function TreeBuilding(TreeNode∗ root)
Initialization(root)
NodeSplitting(root)

end function

2.1.1. Cost Function

For any kd-tree subdivision, the key part is to define a reasonable cost func-
tion. Many cost functions have been proposed for building kd-trees in ray-
tracing acceleration techniques. The most popular cost function for such tech-
niques is given by the surface area heuristic (SAH) [MacDonald and Booth 90].
Its first purpose is to estimate ray intersection and traversal costs, which does
not directly lead to empty-space detection. In particular, to enable SAH to
favor splittings that remove more empty space, the cost function should be
biased with a user-defined factor. This biasing factor can not be used to ex-
actly determine which plane removes most empty voxels. Furthermore, it is
difficult to extend SAH to handle volume data efficiently.

The key element of our method is the introduction of a simple cost function
based on bounding volume computations which maximizes the empty space
removed from the volume associated to the current node. We simply define
the cost function C for the splitting candidate plane p in the node n as follows:

C(n, p) = BV (nleft(p)) + BV (nright(p)) (1)

where nleft, nright are the two child nodes created by the plane p, and BV
is a scalar function which calculates the bounding volume of the non-empty

26 journal of graphics tools

voxels for a given node. Our goal now becomes finding the plane with the
minimum cost value.

The proof that this cost function maximizes the empty space removed
from n is straightforward: for any splitting plane, all the non-empty voxels
are grouped into the two child nodes, which are stored for further subdivision.
The volume of the empty space that can be removed from the current node,
denoted as EV , is calculated by eqn. (2):

EV (n, p) = BV (n)− (BV (nleft(p)) + BV (nright(p)))
= BV (n)− C(n, p)

(2)

Therefore minimizing the cost function is equivalent to maximizing EV , that
is, removing most empty space from the current node. A simple 2D example
is presented in Fig. 2: based on our cost function, p2 is a better choice than
p1 and p3 for the current node.

Figure 2. A 2D illustration for the cost function. The regions with non-empty
voxels are depicted in gray. The bounding boxes for the original node and the two
child nodes are marked with red and black respectively. The splitting planes are
denoted as dotted lines.

We should point out that at each step we get a local optimum. If one wants
to produce a kd-tree that removes the most empty space for a given tree
depth, it is necessary to perform a global optimization that finds the splitting
plane set {pi} that minimizes

∑
i C(ni, pi). But this is a time-consuming

process. In practice, even without global optimization, the algorithm is able
to remove a significant amount of empty space with a low tree depth, as
shown in Section 3. A limitation of the local-only approach is that it cannot
remove the holes inside the object: The splitting planes needed to extract
those holes are not locally favored by the cost function (for that purpose, a
global optimization is required).

2.1.2. Fast Bounding Volume Computation

We can see from eqn. (1) that the cost function is based on the bounding
volume (BV) computation of the two child nodes. Since the cost function
needs to be computed for each candidate plane, a fast method to find the

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 27

bounding box of a given axis-aligned region would be necessary. For a region
defined in the range [iL, iR] × [jL, jR] × [kL, kR], our problem is to find the
following boundaries along each axis respectively:

• [i1, i2] ⊂ [iL, iR] along the X axis

• [j1, j2] ⊂ [jL, jR] along the Y axis

• [k1, k2] ⊂ [kL, kR] along the Z axis

such that any voxel that stays outside [i1, i2]× [j1, j2]× [k1, k2] is empty.
One straightforward method is to scan all the non-empty voxels in the node

and keep updating the boundary values during the scan. This method would
be computationally expensive and impractical for large size volumes. [Tong
et al. 99] employed min-max arrays to accelerate the boundary computation
in a fixed direction, which is not suitable for our work since the min-max
arrays need to be regenerated for each individual node of the tree.

We instead employ a summed-volume table for fast boundary computation.
We first consider how to get the boundary value i1: starting from iL along the
X axis, we increase i by 1 each step. i1 is the first position that guarantees
the region Ri = [iL, i]×[jL, jR]×[kL, kR] is not empty, which can be expressed
as:

i1 = min{i | i ∈ [iL, iR] & Ri is not empty} (3)

In the worst case, we need to test if Ri is empty or not for iR − iL + 1 times.
Therefore if we can find a quick way to determine if an axis-aligned region of
the volume is empty or not, the computation for i1 can be greatly accelerated.
The summed-volume table solves this problem in a simple way.

The summed-volume table, denoted as V2, is a 3D array that is the same
size as V1. The value for the element (i, j, k) in V2 is defined as

V2(i, j, k) =
i∑

u=1

j∑
v=1

k∑
w=1

V1(u, v, w) (4)

The summed-volume table, first introduced in [Glassner 90], is a natural 3D
extension of the summed-area table for 2D images [Crow 84] (see Figure 3).
V2(i, j, k) records the total number of the non-empty voxels in region [1, i] ×
[1, j]× [1, k]. In practice V2 is built within one pass through the 3D grid in a
sequential way:

V2(i, j, k) = V1(i, j, k) + V2(i, j, k − 1)
+ (V2(i− 1, j, k)− V2(i− 1, j, k − 1))
+ (V2(i, j − 1, k)− V2(i, j − 1, k − 1))
− (V2(i− 1, j − 1, k)− V2(i− 1, j − 1, k − 1))

(5)

28 journal of graphics tools

To compute V2(i, j, k), we need to fetch the current cell value V1(i, j, k) and
seven previously computed V2 values. For special cases where the index values
i − 1, j − 1 and k − 1 are not available, the corresponding V2 values are set
to zero. Note that eqn. (5) only requires the V1 value for the current cell,
which means V2 can be built directly from V1 in the same array. V2(i, j, k)
is computed and stored at position (i, j, k), while the old V1(i, j, k) value
can be discarded safely since it is no longer used for further computation.
Therefore no new volume needs to be created for V2. Once this table is
built, the number of the non-empty voxels in an arbitrary axis-aligned region
R = [u1 + 1, u2] × [v1 + 1, v2] × [w1 + 1, w2] (denoted as Num(R)) can be
computed with eight lookups in V2:

Num(R) = (V2(u2, v2, w2)− V2(u2, v2, w1))
− (V2(u1, v2, w2)− V2(u1, v2, w1))
− (V2(u2, v1, w2)− V2(u2, v1, w1))
+ (V2(u1, v1, w2)− V2(u1, v1, w1))

(6)

If Num(R) = 0, we know that region R is totally empty. A simple analysis
would reveal that eqn. (5) is just a special case of eqn. (6).

Figure 3. Illustration of the summed table in 2D [Crow 84]: Sum of the gray
rectangle elements = Sum(u2, v2) (elements outlined in yellow) − Sum(u1, v2)
(elements outlined in green) − Sum(u2, v1) (elements outlined in red) + Sum(u1, v1)
(elements outlined in blue). Eqn. (6) is the extension of this formula to 3D.

With eqn. (3) and (6), i1 can be found in O(iR−iL+1) time cost. Boundary
values i2, j1, j2, k1, k2 are computed in a similar way, then BV is computed
from these boundary values.

2.1.3. Splitting Plane Selection

With the cost function (1), the proper splitting plane can be approximated
with a greedy algorithm: a set of candidate planes are generated uniformly

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 29

along one axis and the plane that gives the lowest cost is selected. To make
sure that no node will be stretched too far in one direction, we choose to split
along the longest axis of the bounding box. This also reduces the number
of candidate planes since they are only generated along one axis instead of
three. The number m of candidate planes depends on the length of the split

axis lmax and the user-defined distance ∆l between the planes: m = b lmax

∆l
c.

In practice, we set ∆l to be 4 for 2563 data sets and 8 for 5123 data sets.
Therefore the number of the candidate planes for each node would not exceed
64 in both cases.

2.1.4. Halting Criteria

In our algorithm, the node splitting process is recursively performed on the
newly generated subregions until one of the following criteria is satisfied:

1. The node volume is smaller than some minimum threshold.

2. The best splitting plane can not remove enough empty space from the
node.

For criteria 1, the minimum volume threshold needs to be adjusted for different
volume resolutions. In practice we set this value to be 10% of the original
volume. For criterion 2, we set the minimum percentage of empty space that
should be removed from the node by the split plane to be 5%, which works
well for all our examples. Fixing a maximum depth is necessary for a complete
kd-tree building process. Since our algorithm normally stops at a reasonable
depth (4 ∼ 7 in the examples), we set this maximum depth to be a large value
such as 10 so that it is seldom used for recursion termination.

2.2. Subvolume List Generation

Following the kd-tree building phase, we traverse the tree to get a list of the
non-empty nodes. Each non-empty node contains an axis-aligned subvolume
that encloses some regions of interest. The straightforward way is to traverse
the tree to collect all the leaf nodes. Some small leaf nodes might enter the list
without bringing much gain for the performance. It would be helpful for the
users if the total number of the subvolumes, M , can be controlled and adjusted
during the tree traversal process. Therefore we provide an alternative traversal
scheme for the generation of the subvolume list. Starting from the root node,
we want to produce at most M subvolumes. If M = 1, the root node is
included in the list, and the scheme stops; if M > 1, we first compute the
number of the leaf nodes Ml and Mr for its two child nodes. If (Ml+Mr) ≤M ,
all the leaf nodes are included in the list as the final results; otherwise the

30 journal of graphics tools

maximum number of subvolumes that the two child nodes can produce should

be limited to M
′

l = dM · Ml

(Ml + Mr)
e and M

′

r = dM · Mr

(Ml + Mr)
e respectively.

The scheme then operates on two child nodes with the new limitation numbers
M

′

l and M
′

r in a recursive way. The size of the subvolume list is successfully
controlled in the scheme. In practice, different M values can be tested for
various examples by the users to find a suitable subvolume list with enough
empty space removing and good rendering efficiency.

For adjacent subvolumes, their AABB computation on the common bound-
ary faces is adjusted to be consistent with each other to avoid discontinuous
artifacts during rendering. In the volume rendering stage we render the sub-
volumes using a slice-based method. At this stage, raycasting may also be
used; the kd-tree structure is then used to accelerate the intersection compu-
tations of the rays with the non-empty subvolumes.

2.3. Algorithm Summary

The whole preprocessing algorithm can now be summarized in the following
four steps:

1. Build the binary volume V1.

2. Build the summed-volume table V2 from V1.

3. Build the kd-tree T .

4. Generate the subvolume list by traversing T .

Given the volume resolution lx, ly, lz, we briefly discuss the running time cost
of each step. Without losing generality, we assume lx = ly = lz = l. For
step 1 and 2, V1 and V2 are both built in O(l3). For step 3, the splitting
process for the root node is considered. The number of the plane candidates
is proportional to l. For each candidate plane, the bounding volumes of its left
and right child nodes are computed in O(l) with the summed-volume table V2.
Therefore the proper candidate plane for the root node is found in O(l2). If the
depth of the generated kd-tree is denoted as dmax, the computation cost for
building the whole kd-tree would not exceed O(2dmax · l2). Then in step 4, the
subvolume list can be generated in a O(2dmax) tree traversal. We can see that
the overall time cost for the algorithm is mostly determined by the O(l3) step
1, 2 and the O(2dmax · l2) step 3. Since the kd-tree building process naturally
stops at an early stage, the tree depth dmax is usually low (4 ∼ 7 in our
examples), which means step 1 ,2 are more computationally expensive than
step 3, especially for large size volumes. Therefore the algorithm is basically
a O(l3) process. Finally we present the total memory cost of the algorithm:

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 31

only one copy of the original volume is maintained for V1 and the subsequent
V2, as shown in Section 2.1. The memory usage for the dynamical kd-tree and
the subvolume list is related to the tree depth dmax and the halting criteria,
which is negligible compared to the summed-volume table.

3. Examples

Table 1. Performance results for the examples with increasing number of sub-
volumes as shown on Figures 1, 4 and 5. For each example, we test on two grid
resolutions: 2563 and 5123. The number of the subvolumes, the percentage of the
empty space removed from the intial volume, the average rendering time (in frames
per second) from six orthogonal viewpoints are recorded with a screen resolution of
800× 600.

We applied our preprocessing method on several examples as shown in Fig-
ures 1, 4 and 5. Our initial aim was to accelerate the interactive rendering of
plants and trees represented by the volume data, such as models A, C and E.
Many empty regions exist in this kind of volume data, especially around the
trunks of the trees. We also applied the method on some more general shapes
(models B, D, F, G and H). Our test platform is a Pentium IV 2.40GHz PC
equipped with a NVIDIA GeForce 8800 GTX graphics card. For each ex-
ample, we test the data set on two different grid resolutions: 2563 and 5123.
We record the following performance results with an increasing number of the
subvolumes for comparison: the preprocessing time (for steps 1, 2 and 3),
the percentage of the empty space removed from the volume, and the average
rendering time from six orthogonal view directions with a slice-based method.
The screen resolution is 800× 600. Note that for each example, the numbers

32 journal of graphics tools

of the subvolumes are adjusted respectively to produce satisfactory results
(following the method described in Section 2.2). We do not provide the time
spent on subvolume list generation since it is negligible compared to the tree
building process. The results are presented in Table 1.

Figure 4. Display of the subvolume list of data sets C to E in Table 1. See also
Figures 1 and 5.

Despite its simplicity, our algorithm performs well on all the examples: It
removes significant empty space from the original volume with just a small
number of subvolumes (less than 16). We can see from these examples that
the subvolumes divide the initial object in an even manner: After the first
building steps, compact non-empty regions are embedded directly in a small
number of large subvolumes which are then naturally refined in later steps.
Thereby we avoid a common shortcoming of partitioning algorithms which is
to produce in the first steps some regions of small size that need to be brought
together to reduce the number of subvolumes that fit the non-empty spaces.

We can also observe that the rendering speed is significantly improved,

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 33

Figure 5. Display of the subvolume list of data sets F to H in Table 1. See also
Figures 1 and 4.

especially for models E, G and H. Furthermore, it requires little preprocessing
time for our examples: about half a second for 2563 data sets, and about 4
seconds for 5123 data sets, which is consistent with our algorithm analysis.

4. Discussion

As stated in the introduction, in this paper we consider static volumes with a
fixed transfer function. In the examples presented in the previous section, the

34 journal of graphics tools

volumes are defined by 3D textures that store the color and opacity of each
voxel, and they are rendered directly with a slice-based algorithm (no transfer
function is applied). This can be seen as a limitation since interactive transfer
function editing is often required by volume visualization applications. Since
the preprocessing time of our method is quite low (especially for volumes of
resolution less than or equal to 2563), an option to alleviate this limitation can
be to recompute the subvolume list when significant changes to the transfer
function occur. If the volume resolution is too large to allow fast update of the
non-empty subvolumes list, one could rebuild this list using a filtered version
of the volume at a lower resolution in order to get a good approximation of
the list. The exact list can then be computed from the full resolution volume
when transfer function editing stops.

Another limitation, already mentioned in Section 2.1.1, is that our algo-
rithm cannot remove the empty space inside a voxelized object, since the
splitting rule is based on a direct estimation of outer bounding volume which
cannot capture the holes in the object. For those objects with considerable
internal empty space such as the skull model (F) in Table 1, the speedup is not
significant since the internal volume still needs to be sampled and rendered.
For fuzzy objects like trees, this is not a serious limitation. However, a global
optimization would be necessary for the generation of the kd-tree if one needs
to alleviate this problem.

For future improvement we could consider reducing the size of the 3D tex-
ture with the generated subvolumes following the texture packing algorithm
in [Kähler et al. 03]. And we could also consider applying our method to some
larger size data sets, which may be initially divided into several bricks to fit
into the GPU memory.

Finally we note that our method (except the fast bounding volume compu-
tation part) can be extended to build kd-trees that isolate empty regions for
3D meshes. In this case, the bounding volumes are estimated by accumulating
the AABBs of the mesh faces.

Acknowledgments

The authors would like to thank Jamie Wither and Laks Raghupathi for
proofreading. We would also like to thank the anonymous reviewers for their
valuable comments. Philippe Decaudin is supported by a grant from the
Marie-Curie project REVPE MOIF-CT-2006-22230 from the European Com-
munity. Xing Mei is supported by LIAMA NSFC 60073007 and the Marie-
Curie project VISITOR MEST-CT-2004-8270 from the European Community.

Vidal et al.: Simple Empty-Space Removal for Interactive Volume Rendering 35

References

[Cabral et al. 94] Brian Cabral, Nancy Cam, and Jim Foran. “Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using Texture Mapping
Hardware.” In VVS ’94: Proceedings of the 1994 symposium on Volume
visualization, pp. 91–98, 1994.

[Crow 84] Franklin C. Crow. “Summed-area tables for texture mapping.” In
SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, pp. 207–212, 1984.

[Engel and Ertl 02] K. Engel and T. Ertl. “Interactive high-quality volume
rendering with flexible consumer graphics hardware.” Eurographics ’02,
State of the Art Report, 2002.

[Glassner 90] Andrew S. Glassner. “Multidimensional sum tables.” In Graph-
ics Gems, pp. 376–381. Academic Press, 1990.

[Hadwiger et al. 06] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama,
Daniel Weiskopf, and Klaus Engel. Real-Time Volume Graphics. A. K.
Peters, 2006.

[Kähler et al. 03] Ralf Kähler, Mark Simon, and Hans-Christian Hege. “In-
teractive volume rendering of large sparse data sets using adaptive mesh
refinement hierarchies.” IEEE Transactions on Visualization and Com-
puter Graphics 9:3 (2003), 341–351.

[Kruger and Westermann 03] J. Kruger and R. Westermann. “Acceleration
Techniques for GPU-based Volume Rendering.” In VIS ’03: Proceed-
ings of the 14th IEEE Visualization 2003 Conference, pp. 38–42, 2003.

[LaMar et al. 99] Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. “Mul-
tiresolution Techniques for Interactive Texture-based Volume Visualiza-
tion.” In VIS ’99: Proceedings of the 10th IEEE Visualization 1999
Conference, pp. 355–362, 1999.

[Levoy 90] Marc Levoy. “Efficient ray tracing of volume data.” ACM Trans.
Graph. 9:3 (1990), 245–261.

[Li and Kaufman 03] Wei Li and Arie Kaufman. “Texture Partitioning and
Packing for Accelerating Texture-based Volume Rendering.” In GI ’03:
Graphics Interface, pp. 81–88, 2003.

[Li et al. 03] Wei Li, Klaus Mueller, and Arie Kaufman. “Empty Space Skip-
ping and Occlusion Clipping for Texture-based Volume Rendering.” In
VIS ’03: Proceedings of the 14th IEEE Visualization 2003 Conference,
pp. 317–324, 2003.

36 journal of graphics tools

[MacDonald and Booth 90] David J. MacDonald and Kellogg S. Booth.
“Heuristics for ray tracing using space subdivision.” The Visual Com-
puter 6:3 (1990), 153–166.

[Stegmaier et al. 05] Simon Stegmaier, Magnus Strengert, Thomas Klein, and
Thomas Ertl. “A simple and flexible volume rendering framework for
graphics-hardware-based raycasting.” In Fourth International Workshop
on Volume Graphics, pp. 187–241, 2005.

[Subramanian and Fussell 90] K. R. Subramanian and Donald S. Fussell. “Ap-
plying space subdivision techniques to volume rendering.” In VIS ’90:
Proceedings of the 1st conference on Visualization ’90, pp. 150–159, 1990.

[Tong et al. 99] Xin Tong, Wenping Wang, Waiwan Tsang, and Zesheng Tang.
“Efficiently Rendering Large Volume Data Using Texture Mapping Hard-
ware.” In Proceedings of Joint Eurographics/IEEE TVCG Symposisum
on Visualization, 1999.

Information:

Vincent Vidal, INRIA-Evasion, Inovallée 655 avenue de l’Europe, 38330 Montbonnot
Saint-Martin, France
(vidal.vince@gmail.com)

Xing Mei, CASIA-NLPR/LIAMA, 95 Zhongguancun East Road, Beijing 2728# P.O.
100080, China
(xmei@nlpr.ia.ac.cn)

Philippe Decaudin, INRIA-Evasion, Inovallée 655 avenue de l’Europe, 38330 Mont-
bonnot Saint-Martin, France
(http://www.antisphere.com)

Received November 14, 2007; accepted in revised form June 4, 2008.

