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Abstract 

We present a rendering algorithm that produces images with the appearance of a traditional cartoon from 
a 3D description of the scene (a static or an animated scene). 

The 3D scene is rendered with techniques allowing to: 

- outline the profiles and edges of objects in back, 

- uniformly color the surface inside the outlines, 

- render shadows (backface shadows and projected shadows) due to light sources. 
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1 Introduction 

 

This paper presents a rendering algorithm that produces "cartoon looking" computer generated images 
from data representing a 3D scene. In contrast to classical rendering algorithm which try to generate 
images as real as possible (photo-realism), cartoon and cel animation images use a more stylized and 
suggestive rendering [1]. For instance, characters and objects shown on a drawing are represented by their 
outlines, and the shape inside outlines is usually filled with a uniform color (see figure 1). 

 

1.1 Typical features 

 

Many variations and levels of quality exist in drawings. The size of the outline may vary, colored areas 
may include gradients, or light and shadow effects may create a kind of atmosphere. We will not try to 
reproduce all possible effects here. We would like to obtain images that have a stylized "cartoon" (or 
"cel") look, with constant-size outlines and uniformly colored areas. We add three more effects: the 
ability to replace a uniformly colored area by a texture, the ability to add specular highlights on some 
objects, and shadows. 

• Texture is not required, but it is an easy way to enrich a drawing, for instance by repeating a 
regular pattern on a surface. 

• Specular highlights provide visual feedback about the material type of an object (flat, shiny, 
metallic…). They correspond to the reflection of light sources on the objects and are represented 
by small, localized, brightly colored spots. 

• Shadows add information to the image that helps to perceive the 3D aspect of the scene. We will 
distinguish two types of shadows: backface shadows that correspond to unlit sides of objects2, 
and projected shadows that correspond to areas occluded by an object in-between this area and a 
light source3. We will deal with both types. In 'cheap' classical cartoons, shadows are often not 
drawn. In more elaborated cartoons, backface shadows are often figurative; an area of an object 
that is half in light and half in shadow will have two colors: the object's color for the lighted part, 
and this color darkened for the unlit part. The boundary between the two is sharp, contrary to 
classical computer graphics images where the transition is smooth (gradient). In the case of a 
single static light source, backface shadows are quite easy to draw by hand, even if the object 
moves, because they stay relatively localized during the animation, especially if it is a directional 
light source (like the sun). On the other hand, projected shadows of moving objects may change 
a lot during the animation and are difficult to draw by hand, which incites the artist to draw only 
projected shadows of static objects such as those in the background. 

                                                           
2 i.e. areas opposed to the light source, where n·l<0 (dot product between n, the normal of a point and l, 
the vector from this point to the light source) 
3 projected shadows include ‘self shadows’ that an object projects onto itself. 
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Figure 1: a teapot rendered by a photo-realistic algorithm (left) and by our "cartoon-looking" algorithm (right). 

 

1.2 Principle 

 

Our algorithm produces an image from the geometrical description of a 3D scene. The type of description 
used does not matter; the algorithm is general and can handle any kind of description (facets, patches, 
CSG, metaballs…).  In our implementation, input scenes are described by an OpenInventor [7] scene 
graph and geometries are described by Bezier patches and facets. These allow us to use classical 
projective rendering techniques as a basis for our algorithm. Renderings are produced using OpenInventor 
and OpenGL [3] graphics libraries and take advantage of hardware to accelerate calculations. Extending 
to other rendering techniques may be straightforward. 

The shading model used by OpenGL is based on the Phong shading model. The formula to calculate the 
color of a point is: 

 

color    =  ambientglobal x ambientmaterial 

 
+ ∑

=

sourcesnum

i 0
 ambientsource i x ambientmaterial 

  + max{li·n, 0} x diffusesource i x diffusematerial 

 

  + max{si·n, 0} x specularsource i x specularmaterial  

 

Next, we will apply this formula to obtain several desired effects. 

Winkenbach and Salesin [9] as well as Salisbury and al. [6] dealt with pen and ink illustration. The effect 
they obtain is relatively close to a cartoon-looking rendering, but the method they use is more restricted. 
In [9], only objects composed of plane surfaces can be treated, and in [6], the process requires user 
interactions, so it's difficult to use it to generate animations automatically. 

Our algorithm uses a set of computer graphics techniques: the "shadow maps" [8] technique is used to 
produce shadows, and the outline drawing technique is inspired by image processing algorithms described 
by Saito and Takahashi [5]. The originality of our approach owes mainly to how these techniques are 
adapted and mixed to produce a cartoon looking animations. 
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Figure 2: overview – algorithm steps 
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2 Algorithm 

 

2.1 Overview 

 

Figure 2 presents the different steps of our rendering algorithm. Each step produces an image; the 
combination of these images produces the final image. These steps, which we will elaborate on below, 
are: 

• rendering of the scene with ambient light only; 

• calculation of outlines of scene objects; 

• for each light source: 

- rendering of the scene illuminated by this light; 

- calculation of backface shadows and projected shadows due to this light; 

• combination of the images 

 

2.2 The calculated images 

 

Images and buffers required by the algorithm are: 

• Rendering of the scene with ambient light only. This image is produced by rendering the scene 
viewed from the camera with all lights off. Each object is colored or textured without any 
illumination (colors are uniform), attenuated by the global ambient intensity of the scene. For 
instance, if the global ambient intensity is 0.2, a red object (R=1, G=0, B=0) will be displayed 
uniformly dark red (R=0.2, G=0, B=0). 

• Z-buffer of the scene viewed from the camera. We take advantage of the previous rendering (the 
ambient  lighted scene) to get its z-buffer (i.e. depth buffer, each pixel stores its distance to the 
camera). 

• Normal buffer of the scene. Three values are stored at each pixel of this buffer: the three 
coordinates (nx, ny, nz) of the normal associated to the corresponding 3D point. It is possible to 
get this buffer by performing two renderings of the scene viewed from the camera (figure 6). For 
these two renderings, colors and textures of all objects are replaced by a pure diffuse white 
material (ambient=black, diffuse=white, no specular). Light sources are off. The first rendering 
(I1) is produced by adding three directional light sources to the scene, the first one is red and its 
direction is +x, the second one is green and its direction is +y, and the third one is blue and its 
direction is +z. The calculation of the color where normal is n=(nx, ny, nz) gives: 

  color  =  red  x max{nx, 0} + green  x max{ny, 0} + blue x  max{nz, 0} . 

So the red component of point is max{nx, 0}, the green component is max{ny, 0}, the blue 
component is max{nz, 0}. The second rendering (I2) is produced by inversing the direction of the 
three light sources: red along -x, green along -y and blue along -z. The color calculation gives: 

  color  =  red  x max{-nx, 0} + green  x max{-ny, 0} + blue  x max{-nz, 0} . 
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Finally, subtracting the two renderings I1-I2 gives a buffer in which each component red, blue, 
green corresponds to nx, ny, nz respectively. 

For each light source: 

• Rendering of the scene illuminated by this light only. For this rendering, we don't take the global 
ambient of the scene into account. We want to render an image without realistic shading 
calculations, in order to get the flat colors without gradient that are characteristic of traditional 
cartoon and cel drawings. To do so, we eliminate the n.l (n is the object's normal, l is the vector 
directed to the light source) term of the Phong shading equation. If the object is specular, we 
keep its specular highlight because it provides information about object's material type (flat, 
shiny, metallic…). Thus, we modify the objects' materials as follows: copy its diffuse color to 
ambient, set diffuse to black, keep specular. We obtain an image where each object is uniformly 
colored by its diffuse color (eventually combined with its texture and specular highlight). 

• Z-buffer viewed form the light source. To obtain this buffer, a camera replaces the light source; a 
rendering of the scene viewed from this new camera is done, and the z-buffer is then read back. 
It will be used for the calculation of shadows (detailed further) cast by this light source; we will 
use the "shadow map" technique. 

 

2.3 Algorithm steps 

 

The final image is obtained by processing and combining the buffers and images introduced in the 
previous section. 

 

2.3.1 Objects' outlines 

 

We are interested in two kinds of outlines: silhouettes (object's profiles) and crease edges (sharp creases). 

Silhouettes correspond to places where the view direction (half-line starting from the camera's center and 
going through a given pixel) is tangent to the object's surface. Silhouettes can be obtained by numerical 
calculation in object space, but for high level surfaces like patches this often leads to complex algorithms, 
which are difficult to program due to numerous particular cases and become unstable for points where a 
silhouette disappears because of a curvature change on the surface (see, for example, the blue and white 
patch of figure 2). We favor a simpler and more stable approach, with little loss of flexibility, inspired by 
[5]. Silhouettes also correspond to discontinuities (of zero-order) in the z-buffer of the scene viewed from 
the camera. A contour detection filter can be applied to this z-buffer to get these discontinuities. To do so, 
we apply the following differential operator of order 1 and size 3x3: 

 ( )xHxGxFxExDxCxBxAg −+−+−+−+−+−+−+−= 22228
1  

where A,B,…,H are the 8 neighbor pixels of x :   A B C 
 D x E 
 F G H 
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This operator produces a gradient of the z-buffer, it has to be threshold to obtain silhouettes that 
correspond to areas with a high gradient. The following 3x3 non-linear filter is used: 

 














 −= 1,min

2
minmax

pk
ggp  

where gmax and gmin are the maximum and minimum values of the gradient in the considered 3x3 
neighborhood, and kp is the detection threshold in-between 0 and 1. The lower kp is, the more silhouettes 
will be detected. Choice of this parameter is not obvious; it is an input parameter of the algorithm, it 
depends mainly on the size (width x height) of the z-buffer, because the more precise the z variations, the 
easier it is to distinguish a discontinuity from a quick but continuous decrease of z. In our implementation, 
the value kp=0.0001 gives good results for an image at video resolution (768 x 576). 

Visible crease edges of objects can be detected in a similar way. Theoretically, a second order differential 
operator applied to the z-buffer should solve the problem (crease edges are z discontinuities of order 1), 
but in practice this operator proves to be instable because it is too approximate. A filter of higher size 
should give better results, but calculations will become much more expensive. We opt for another 
solution: these crease edges also correspond to zero-order discontinuities of the normal buffer, so a 
contour detection filter can be applied to this buffer. It is similar to the one used for silhouettes, except 
that it may take into account the three normal components nx,ny,nz for the gradient calculation. The choice 
of ka (equivalent to kp but for crease edges) is less sensitive than for kp, the value ka=0.2 gives good 
results. 

These several filters compute outlines that characterize objects in a stable way and in a moderate time. 
Two more problems have to be solved: stroke thickness and stroke antialiasing. Stroke thickness is 
implied by the two 3x3 filter passes that give a final stroke thickness of approximately 5 pixels. This 
stroke is aliased because of the abrupt threshold we used: it avoids fuzzy strokes but it generates aliasing. 
To overcome these drawbacks, we extract outlines on an image of higher resolution than the final image. 
The result is resampled to get an image of the correct size. Thus, by filtering a double sized image, 
outlines will finally have a thickness of about 2.5 pixels and will also be antialiased since they are 
obtained by averaging outlines of 5 pixels thick. Of course, if we want thinner and more precise 
(antialiased) outlines, calculations become more expensive. Doing calculations on double sized images 
gives acceptable results to produce video resolution images; the examples included in this paper (figures 1 
and 4) are computed using this approach. 

 

2.3.2 Shadows 

 

For each light source, a rendering of the scene illuminated by this light only is generated. We will 
compute shadows due to this light. 

Projected shadows are obtained using the "shadow map" technique. For each pixel, it checks if the 
corresponding 3D point is visible or not from the light (figure 3). If not, it is in a shadowed area and will 
be darkened. The algorithm steps are: 

For each pixel (xe,ye) of the image: 

• Calculate the coordinates (xw,yw,zw) of 3D point corresponding to this pixel in the world 
frame (obtained from xe,ye, value read into the z-buffer ze, and the 4x4 camera projection 
matrix), 

• Calculate the coordinates (xl,yl,zl) of the 3D point in the light frame, 

• Compare zl and the value zs read from the z-buffer of the light at position (xl,yl): 
- if zl>zs then the point is not "seen" by the light, it is into shadow 
- else it is lit. 



8 Philippe Decaudin 

 
Figure 3: notations used for projected shadow calculation 

In practice, this algorithm has a major drawback: it generates aliased shadows because the z-buffer has a 
fixed resolution that may not be enough in some locations. An object that occupies a big space on the 
image viewed from the camera can be small on the image viewed form the light source. The resulting 
projected shadow is then imprecise (aliased). Reeves, Salesin and Cook [4] proposed a method to 
overcome this drawback and to obtain soft-shadows. It consists in comparing several pixels near (xl,yl) 
and averaging the result (see their paper for more details). 

This algorithm should allow object backface-shadowing as well, but the result is not good enough for a 
"cartoon-looking" rendering where the backface shadow boundaries must be precise: zs read from the z-
buffer of the light source is not accurate enough around this shadow boundary. Fortunately there is 
another way to get object backface shadows: backface shadows are object areas opposed to the light 
source, i.e. where n·l<0 (dot product between n, the normal of a point and l, the vector from this point to 
the light source). Thus the normal-buffer of the scene can be used with the z-buffer of the scene viewed 
from the camera to do this test. 

We obtain an image with projected and backface shadows due to the given light source. Cumulating the 
images obtained for each light source will produce the final image as described in the next section. 

 

2.3.3 Calculation of the final image 

 

Our algorithm produces the final image by adding the ambient rendering and all the lit and shadowed 
images (one for each light source), and then multiplying the result by {one minus the outline buffer}, 
which is a buffer with 1 everywhere except near the outlines. Thus, the global ambient of the scene, light 
sources and shadows are taken into account, and outlines appears as black lines. 

 

3 Implementation and results 

 

This algorithm has been implemented in C++ on a Silicon Graphics workstation. It takes as input a scene 
in OpenInventor format and uses OpenInventor and OpenGL graphic libraries to execute the different 
steps of the algorithm. These libraries are used to modify the scene (materials and camera) and to do 
offscreen renderings to get the required buffers.  

We used our algorithm to realize a short cartoon animation (1mn12) named "Rendez-vous". Image 
sequences are generated directly from the 3D descriptions of the scenes and their animations. There is no 
hand drawing. These scenes were modeled using some Silicon Graphics tools such as SceneViewer 



Cartoon-Looking Rendering of 3D-Scenes  9 

(figure 5) and Noodle, and saved as OpenInventor scripts. Animations are created by editing these scripts 
and by adding some animated nodes to OpenInventor scene graphs that describe scenes. Figure 4 shows 
some images from the movie. It is composed of more than 1500 images generated at video resolution 
(768 x 576). Calculation of an image took about 6 minutes on an INDY workstation (MIPS R4400 
200MHz). 

 

4 Conclusion and perspectives 

 

Compared to traditional cartoon/cell drawing techniques, an advantage of our technique is that it produces 
images automatically. In fact, the artistic work is moved ahead: the scene must first be created and 
animated using 3D modeling tools. Such a system is of course less flexible because it is difficult to create 
expressive animations such as those found in some cartoons; but on the other hand, it becomes easier to 
keep spatial and temporal coherency during the animation. For instance, object and camera rotations and 
also light movements can be easily created; furthermore shadows will stay coherent. 

The method still has a number of shortcomings, however. We'd like, for example, to deal with transparent 
objects, or to control the thickness of strokes independently of antialising, and to vary this thickness 
according to the curvature of the surface at this place (a technique used in cartoons and comics to 
emphasize the curvature). 
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Figure 4: some images from the movie “Rendez-vous” 
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Figure 5: OpenInventor scene used for "Rendez-vous" 

 

 
Figure 6 : normal-buffer construction; the resulting image (right) includes RGB values in-between 

[-1,+1]3 corresponding to nx,ny,nz  (coding used: -1,-1,-1=black, 0,0,0=grey, 1,1,1=white) 
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