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Abstract

Many modeling techniques for geometric objects have been developed; they allow the user to create,
deform, animate objects and produce complex ones from simple primitives. This paper presents a new
technique which composes two 2D or 3D interpenetrating shapes by creating another one including them
and having a smooth aspect. By moving into each other, composed objects fuse smoothly and naturally. To
determine the fusion, the technique is based upon a constraint : the resulting shape has the same volume
(or area in 2D) as the sum of the components. This technique is available for shapes having a polygonal
(in 2D) or a polyhedral (in 3D) description. Inside a modeler, it can be utilized to design modeling and
animation tools. We present three of them: a creation tool, an animated deformation tool and a morphing
tool which is an adaptation of our technique to this problem. One of the advantages of these tools is that
the user may easily guess what will be the result.

1 Introduction

An important task for modeling and animating techniques is to produce complex objects and animate them.
Many tools have been already developed to create such objects.

Some of them use the composition of simple primitives to obtain more complex shapes. Surfaces of smooth
shapes can be generated by patches like B-spline ([3],[1]). They can be approximated by a vertex/edge/facet
network which allows to mix them with surfaces obtained by other methods. By moving control points of the
patches, surfaces can be animated.

Implicit surfaces are an other way to create and animate smooth shapes. They can simulate smooth fusions
between objects ([15], [14], [13]).

A different manner of constructing a complex shape is to deform a preexisting one with a given deformation
tool (Free-Form Deformation [11], [4]). Then, the tool can be animated (Animated Free-Form Deformation
).

Interesting animated shapes may also be obtained through the metamorphosis from one shape to another
one ([10],[7]) or by using composition laws between two shapes. As an example, in [9], the Minkovski sum
between two object shapes is computed.

We present here a new technique to compose two interpenetrating shapes. It creates another shape
corresponding to a type of fusion of these shapes where the final shape includes the initial ones and the
volume of the final shape is the sum of the volumes of the initial ones (see figure 1). The volume preservation
is not a main feature, but we uses this constraint to define the fusion method (see section 3). Our method
allows the composition of shapes having sharp edges because it has been designed to deal with polyhedral
shape models (this property differs from implicit modeling). The result have also a polyhedral description on
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which all tools available for polyhedral objects can be applied. An adaptive scheme has been developed to
control the quality of the smoothness of the composed shapes.

Case of star-shaped! objects will be first presented. Star-shaped objects and convex objects (which are
included in the star-shaped object class) can be described by a polar function. We will use this description
to present the composition technique. However our technique does not only work on star-shaped objects; we
present an extension of the algorithm which allows to compose a vast class of objects with a star-shaped
object. We have developed tools based upon our composition technique : they allow the user to create complex
shapes and to apply animated deformation on shapes.

2 Composition rules

Let A and B be two two-dimensional or two three-dimensional objects represented by a model of their shapes.
In 2D, we consider polygonal models, and in 3D, polyhedral ones (corresponding to a vertex/edge/facet
network). Our aim is to create a third shape C also represented by a polygonal or polyhedral model so that :

e (Cincludes A and B, i.e. every point in A or B isin C,
e the area (or volume) of C is equal to the area (or volume) of A plus the area (or volume) of B,

e The shape of C is as smooth as possible (i.e. if the surfaces of A and B are continuously differentiable,
the surface of C is continuously differentiable).

Figure 1 shows the result of the composition of two discs. The next section describes the algorithm used.

Figure 1: Composition of two discs

Lan object A is star-shaped with respect to a point H if, for any point M in A, the segment [HM] is in A



3 Fusion of two shapes

3.1 Composing star-shaped objects

In this section, A and B are two objects star-shaped with respect to a single point H (then H belongs to the
intersection between A and B), this point is fixed?.

An intuitive way to describe the fusion technique is to consider that A and B have homogeneous material
density. When superposing A and B, the material density of A N B is double; then, we have an excess of
material in the region corresponding to the area (or volume) of AN B. The idea is to transport this excess to
the boundary of the objects using H as the center of a radial projection. The result C, the composition of A
and B, is an object also star-shaped with respect to the point H. The following subsections give further details
about this method.

3.1.1 2D objects

Figure 2: Notations (in 2D-space)

The shapes of objects A and B can be described by two polar functions p;(6) and ps(6) where H is the
coordinates center (see figure 2). Let Av;(f) and Awvs(f) be the areas of angular sectors defined by (p;(6), df)
and (p2(6), df) respectively.

1
Avl(ﬂ) = §p1(0)2d9
1 2
Avl(ﬂ) = Epl(g) df

We want to find a polar function p(6) associated with object C so that Awv(#), the area of the angular sector
defined by (p(f), df), satisfies:
Av(8) = Avy(8) + Ava(0)

This formula can be interpreted as the preservation of the total quantity of material inside an angular sector.

Av(f) = %p(o)%w

SP67d8 = _pr(6Yd8+ | pa(6)a

2The problem of the choice of H will be discussed later.



By solving this equation, we determine that
p(0) = /p1(0)* + pa2(6)?

Using this polar function, the shape of C can easily be computed and drawn.
The object C satisfies properties defined in section 2:

e C includes A and B (for each 8, p(f) > p1(0) and p(8) > ps(6)),
e ( is built so that its area is equal to the area of A plus the area of B,

e we can prove that if the shapes of A and B are smooth, the shape of C is also smooth (if p; and py are
C™ then p is C")3 .

3.1.2 3D objects

The extension to 3D objects is immediate: A and B are described by two spherical functions py(6,¢) and
p2(0, ¢). By solving the conservation of material equation along a 3D angular sector, C' can be described by

the spherical function
p(0,0) = V(0,0 +p2(8,0)?° ().

The next step is to design an efficient algorithm able to create a polyhedral shape model of the object
C. We first suppose that A and B have no sharp edges and in the next section, we extend this algorithm to
objects containing sharp edges.

The shapes of A and B are described by vertex/edge/facet networks. The aim is to create a
vertex/edge/facet network corresponding to the shape of C. The algorithm we propose creates a simple
object like a tetrahedron centred on H, and “projects” its shape on the surface of the object C so that it
approximates the shape of C as closely as possible, by refining the vertex/edge/facet network. Details of the
iterative algorithm are:

¢ 1. Create a tetrahedron centred on H (4 vertex, 6 edges, 4 facets).

e 2. Project each vertex M (# H) on C using the following projection formula:

M’—H+(</

where I (resp. J) is the intersection of the half straight line [HM) with the object A (resp. B). This
formula is directly implied by the formula (a).

HJ
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e 3. For each facet, check if the facet is lying on the surface of C. Here is a method to perform this test
(which is not the only possible solution).

— 3.1. For each vertex, compute a normal vector by interpolating the normals of the facets connected
to the vertex. Objects A and B are assumed smooth (no sharp edges), therefore C is also smooth*.
“Smoothness” means the continuity of normal vectors at surface points. This smoothness criterion
is used as the basis of the following test:

— 3.2. For each edge, let 77 and 73 be the two normal vectors of vertices of the edge as defined above.
Let € represent the divergence between 77 and ny (if 777 and nj are normalized, € = ||n] — n3]|). If
€ > Emaz then the edge does not lie on C, and it has to be subdivided (€m4z is a constant defined
by the user: the lower €,,4., the better the approximation of C, but the greater the number of facets
necessary for the approximation) .

— 3.3. For each facet, if an edge of the facet has to be subdivided, divide the facet accordingly (figure
3 presents a way to divide triangular facets). The division of some facets may create new vertices.

3The proof is obvious and is not presented here.
4The proof is the same as in the 2D case and is not presented here



e 4. If new vertices have been created, go to step 2, otherwise a “good” approximation of the shape of B
has been built.

The result is a polyhedral description of the shape C, adjusted to be a good approximation (an €;qqz
normal continuity). This means that if the shape C is very smooth, few facets will be created, but if the shape
C has a high curvature, many facets will be created (Figure 4 illustrates this point).

This algorithm is only available for smooth star-shaped (with respect to the center of composition H)
objects, but it is the basis of the general technique. We will now extend this algorithm to the case of star-
shaped objects containing sharp edges.
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Figure 4: Composition of two ellipsoids

3.1.3 Dealing with sharp edges

Let A and B be two star-shaped 3D objects (with respect to one point H) which have to be composed, but
one or both contain some sharp edges. The previous algorithm cannot be applied to such objects because
it supposes that the shape of the composed object C' is smooth. Now, however C contains sharp edges
corresponding to the projections (defined in previous section) of sharp edges of objects A and B.

To solve this problem, the surface of C' will be considered as a collection of smooth surfaces delimited by
its sharp edges, and the previous algorithm will be applied to these smooth surfaces. The sharp edges of C



W -~
e

Rgurs 5: Punon of 3 sphers moving mio 3 tetrahedren



Figure 6 fuzion of two eolored bubibles

are simply defined by the radial projection of those of A and B on the surface of C to be constructed. The
vertex/edge/facet network built for C is the projection on C of the “union” of the networks defining A and
B and the sharp edges are a direct subset of this network. The algorithm used to construct C is a simple
extension of the former algorithm:

Step 1 of the previous algorithm is modified: instead of starting by creating a tetrahedron, we create a
spherical object. First, networks of A and B are projected on a sphere centered on H (a classical spherical
projection), and then the two networks are merged. The merging algorithm will not be detailed here: it is
directly implemented from the Kent, Carlson and Parent efficient merging algorithm presented in [10].

Step 2 is not modified, all edges of the spherical object are projected on C including sharp edges.

Connections between sharp edges define different areas on the object. Each area may be considered as a
smooth surface (it contains no sharp edges), so we can apply step 3.1 and 3.2 to each of these surfaces, and
then apply step 3.3 to the result object.

Step 4 is unchanged.

Figure 5 presents a result of this algorithm: the fusion of a sphere moving into a tetrahedron. This method
gives interesting results, but it is limited to star-shaped objects. We now present a method able to overcome
this disadvantage.

3.2 Composing an object with a star-shaped object

To be able to compose an object A with a star-shaped object B with respect to the center of composition H,
two problems have to be solved. The first one is to extend the way in which the excess of material corresponding
to the intersection region between the two objects is transported at the border. The second one is to build a






model of the shape of the composed object C. The solution proposed here preserves the global volume only if
AN B has got only one connected component.

As above, H is a fixed point in AN B. As A is not necessarily convex or star-shaped with respect to H,
AN B could be a non connex region. Thus the region considered as “the excess of material” corresponds to
the connected component of AN B including the point H. Now, let us consider an angular sector starting from
H. As B is star-shaped, this sector intersects the boundary of B only once; but it may intersect the boundary
of A several times (see figure 7). In fact, the angular sector is composed of sections included in AN B, A, B,
or AN B (“empty sections”). The solution we propose is to move material included in A N B, into the first
empty section. If this section is not large enough to enclose all this material, the remainder is moved to the
next empty section, and so on.

To build a model of the shape of the composed object C, we will initialize C' as a copy A’ of the shape
model of A and then deform it to approximate the shape of C. This technique is described as follows:

e Project the vertex/edge/facet network of B on A' and merge the networks. This step is the same as in
section 3.1.3.

e Deform the model of A’ by projecting some of its vertices onto the object C. In fact, vertices of A’ are
dispatched in three classes. We will describe the three classes and for each one define how vertices are
deformed. Let M be a vertex of A’; consider the half straight line [HM); let J be the intersection point
between [HM) and the shape of B; let P be the point corresponding to the end of the moved material
along an angular sector defined by [HM); let I be, the one of the intersection points between [HM) and
the shape of A which is the closest to P and inside the segment [HP].

M' will refer to the deformation of point M.
_If HHMH > HH”P|
to be deformed).
ot | < |
to a point that cannot be projected onto the shape of C). Figure 8 shows a way to remove a vertex
from a network having only triangular facets.

— Else M'=P (M is projected onto the shape of C).

, then M'=M (M corresponds to a point of the shape of A’ which does not need

, then M has to be removed from the model of the shape of A’ (M corresponds

e Refine the resulting network with the same method as in sections 3.1.2 and 3.1.3.

A-A
AN
< S

Figure 8: Remove a vertex from a network having only triangular facets
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Figure 9: Compositions of ellipsoids
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With this algorithm, we are able to compose an object with a star-shaped object with respect to the center
of composition. The resulting object, which can be of any shape, can be composed with another convex or
star-shaped object. By iterating the process, we are able to build complex objects (see figure 9 to see a complex
object built from a few compositions of ellipsoids).

3.3 The center of composition

To compose two objects, a point H is used as the center of composition. We will now see how to choose this
point.

This point must verify the following constraint: it is in A N B (because it will be used to move the excess
of material included in AN B).

If AN B is convex, any point included in AN B can be chosen, but the center of mass of AN B is the most
natural choice, and it can be automatically computed.

If A and B are star-shaped with respect to a single point, this point is a good candidate for the center of
composition (then the algorithm that composes star-shaped objects can be directly used).

In other cases, any point in A N B can be chosen, but there is no easy way to determine automatically a
point; the simplest solution is to let the user choose it.

4 Applications

This section presents different ways to implement the composition technique inside a modeler. Three modeling
and animating tools will be described : the first one creates objects, the second one deforms objects and
animates deformed objects, finally the third one is a morphing tool which allows a kind of metamorphosis
from one object to another.

4.1 A creation tool

This tool is the direct application of the fusion technique. The user selects two objects and a point. The tool
verifies that the two objects can be composed with respect to the selected point. It then computes a new
vertex/edge/facet network corresponding to the composition of the two objects. The result is a polygonal (in
2D) or polyhedral (in 3D) object on which all tools working on polygonal or polyhedral objects can be applied
(especially the fusion tool itself).

4.2 An animated deformation tool

The composition technique can be also utilized as a deformation tool. By simply animating the deformation
tool, we produce an animated deformation. The user first selects an object A that he/she wants to deform,
and then selects a deformation tool defined by a point H and an object B with a simple shape (an ellipsoid,
a cube, ...). Applying the deformation tool to the object A involves composing A with B with respect to the
point H and replacing A by the result of the composition.

This deformation tool is intuitive for the user : it adds the material of B to the object A. By changing the
position of the point H into A N B, the user can control the direction along which the material of B will be
transported.

Interesting effects can be obtained by deforming an object with an other object which contains sharp edges.
For example, figure 5 is seen as a sphere deformed by a tetrahedron.

Through a minimal modification of the composition technique, the user can also subtract the material
of B from the object A. Presently the composition technique adds areas or volumes along angular sectors
(Av = Awy + Aws,, see section 3). If we now subtract the volume due to B from the volume due to A
(Av = Av; — Avy)® we obtain a composed object which is similar to A, but from which a volume of material
corresponding to the object B has been removed.

An object created or deformed by the composition technique can easily be animated by modifying the
objects which compose it. We will illustrate this point with a simple example: simulating an arm (figure 10).

5B has to be included in A.
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Figure 10: An animated arm

The arm is created by composing some basic objects representing the shoulder, the arm, the biceps and
the forearm. The animation is defined by the following motion: the forearm is rotated with respect to a point
corresponding to the elbow; the biceps is scaled when the forearm moves. At each step of the animation the
composition is computed. This technique is an intuitive way to define an animation of organic deformable
structures.

4.3 A morphing tool

In this section, we show how to adapt our technique to produce a morphing tool. Our aim is to produce
the metamorphosis from an object A to an object B.

An object C(t) (C depends on a parameter ¢t € [0, 1] which corresponds to the time) has to be created, so
that:

-C(0)=A

-C(1) =B

- C(t) is continuous, i.e. the metamorphosis from A to B is continuous.

Methods such as interpolating the two models using the Minkowski sum ([9]) or using a merged topology
([10]) are based upon the same idea as the one we will use here: object A and B are composed at each step
of the transformation, but volume of A is decreased from 100% to 0% and the volume of B is increased from
0% to 100%.

If A and B have simple shapes (convex or star-shaped), C(t) can be computed by the following formula:
O(t) = compgy (hg (V1 —t, A), hg(Vt, B)),

where H is a fixed point in AN B ; hg(a, F) represents the similarity of factor a of an object F with respect
to point H ; compg (F, G) represents the composition of objects F' and G with respect to point H.

Let volume(F) represent the volume of an object F. volume(hm(a,F)) = o® x volume(F), and
volume(comp g (F, G)) = volume(F') + volume(G) because the composition conserves the material. Therefore,

volume(C(t)) = (1 —t) X volume(A) + t x volume(B)

This implies the volume of C' varies linearly from the volume of A to the volume of B. This is an interesting
feature for a morphing tool.

We used the morphing tool to transform a cube into a cross (figure 11). The cross was created by fusing
two ellipsoids.

12



Figure 11: A cube becoming a cross

5 Conclusion

Our fusion technique of two shapes A and B is based upon a material transport. An excess of volume
(corresponding to AN B) is moved using a radial projection. To determine this projection, for each vertex of
C (the result of the fusion of A and B), intersections between an half straight line and shapes A and B are
evaluated (see 3.1.2). These evaluations need a lot of CPU-time. As an example, the computation of shape of
figure 9 takes about 1.5 minute on an Indigo workstation. A fusion cannot be computed in real-time. We are
working on overcoming this drawback.

The method allows to compose objects with a star-shaped object and to animate the result. The radial
projection is adapted to the star-shaped object. By using new kinds of projections adapted to other kinds
of shapes (generalized cylinders, torus, ...), we are studying the composition of general shapes. New effects
(deformations, animations) will be obtained.
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